Electrically Controllable Microparticle Synthesis and Digital Microfluidic Manipulation by Electric-Field-Induced Droplet Dispensing into Immiscible Fluids

نویسندگان

  • Taewoong Um
  • Jiwoo Hong
  • Do Jin Im
  • Sang Joon Lee
  • In Seok Kang
چکیده

The dispensing of tiny droplets is a basic and crucial process in a myriad of applications, such as DNA/protein microarray, cell cultures, chemical synthesis of microparticles, and digital microfluidics. This work systematically demonstrates droplet dispensing into immiscible fluids through electric charge concentration (ECC) method. It exhibits three main modes (i.e., attaching, uniform, and bursting modes) as a function of flow rates, applied voltages, and gap distances between the nozzle and the oil surface. Through a conventional nozzle with diameter of a few millimeters, charged droplets with volumes ranging from a few μL to a few tens of nL can be uniformly dispensed into the oil chamber without reduction in nozzle size. Based on the features of the proposed method (e.g., formation of droplets with controllable polarity and amount of electric charge in water and oil system), a simple and straightforward method is developed for microparticle synthesis, including preparation of colloidosomes and fabrication of Janus microparticles with anisotropic internal structures. Finally, a combined system consisting of ECC-induced droplet dispensing and electrophoresis of charged droplet (ECD)-driven manipulation systems is constructed. This integrated platform will provide increased utility and flexibility in microfluidic applications because a charged droplet can be delivered toward the intended position by programmable electric control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation and manipulation of ‘‘smart’’ droplets

We report the generation and manipulation of electrorheological (ER) droplets that exhibit the giant ER effect. The experiments were carried out on specially designed microfluidic chips, in which the ER droplets were generated by using the microfluidic flow-focusing approach. Both the size and formation rate of these droplets can be controlled through digitally applied electrical signals. The p...

متن کامل

Droplet Formation in a T-junction Microfluidic Device in the Presence of an Electric Field

In this work, the effect of applying an electric field on droplet formation in a T-junction microfluidic device is examined by simulations based on a recent technique known as lattice Boltzmann method (LBM). The electric field is applied in the main channel just beyond the confluence of the continuous and dispersed phases. A combined electrohydrodynamics-multiphase model that can simulate the f...

متن کامل

Frequency-Based Relationship of Electrowetting and Dielectrophoretic Liquid Microactuation

Electrowetting and dielectrophoretic actuation are potentially important microfluidic mechanisms for the transport, dispensing, and manipulation of liquid using simple electrode structures patterned on a substrate. These two mechanisms are, respectively, the lowand high-frequency limits of the electromechanical response of an aqueous liquid to an electric field. The Maxwell stress tensor and an...

متن کامل

Electric Control of Droplets in Microfluidic Devices This work was supported by Kraft Foods, Rhodia Corporation, and the NSF through the Harvard MRSEC (DMR-0213805 and DMR-0243715). The authors thank H. A. Stone and M. P. Brenner for valuable discussions

The precision manipulation of streams of fluids with microfluidic devices is revolutionizing many fluid-based technologies and enabling the development of high-throughput reactors that use minute quantities of reagents. However, as the scale of these reactors shrinks, contamination effects due to surface adsorption and diffusion limit the smallest quantities that can be used. The confinement of...

متن کامل

A novel actuation method of transporting droplets by using electrical charging of droplet in a dielectric fluid.

We evaluate the feasibility of manipulating droplets in two dimensions by exploiting Coulombic forces acting on conductive droplets immersed in a dielectric fluid. When a droplet suspended in an immiscible fluid is located near an electrode under a dc voltage, the droplet can be charged by direct contact, by charge transfer along an electrically conducting path, or by both mechanisms. This proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016